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Abstract
It is shown that for a given Hermitian Hamiltonian possessing supersymmetry,
there is always a non-Hermitian Jaynes–Cummings-type Hamiltonian (JCTH)
admitting entirely real spectra. The parent supersymmetric Hamiltonian and
the corresponding non-Hermitian JCTH are simultaneously diagonalizable.
The exact eigenstates of these non-Hermitian Hamiltonians are constructed
algebraically for certain shape-invariant potentials, including a non-Hermitian
version of the standard Jaynes–Cummings (JC) model for which the parent
supersymmetric Hamiltonian is the superoscillator. It is also shown that a
non-Hermitian version of the several physically motivated generalizations of
the JC model admits entirely real spectra. The positive-definite metric operator
in the Hilbert space is constructed explicitly along with the introduction of
a new inner product structure, so that the eigenstates form a complete set of
orthonormal vectors and the time evolution is unitary.

PACS numbers: 03.65.−w, 11.30.Pb, 03.65.Fd, 32.80.−t

1. Introduction

One of the standard axioms of quantum mechanics is to consider self-adjoint operators so that
the corresponding eigenvalues are real and the time evolution of the eigenstates is unitary.
However, a new viewpoint emerging in the current literature is that although the condition of
Hermiticity is sufficient to have a unitary theory with real spectra, it is not necessary. The
current development in this direction was boosted by the discovery of a class of non-Hermitian
Hamiltonians, invariant under the combined parity and time-reversal symmetry (PT), that admit
real spectra for unbroken PT symmetry [1–18]. The spectra appear in complex-conjugate pairs,
if the PT symmetry is broken spontaneously. This class of non-Hermitian Hamiltonians with
unbroken PT symmetry is also shown to have a further symmetry C similar to the charge
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conjugation [1]. The probabilistic interpretation of the quantum mechanics and the unitary
time evolution of the eigenstates can be restored with the construction of a new inner product
using the CPT symmetry. Field theoretical models with similar features have been studied in
the literature [16].

A complementary approach in constructing physically meaningful theories with non-
Hermitian Hamiltonians admitting real spectra is to introduce the notion of pseudo-Hermiticity
[2]. An operator is said to be pseudo-Hermitian, if it is related to its Hermitian adjoint through
a similarity transformation. The non-Hermitian Hamiltonians admitting real spectra are
shown to be pseudo-Hermitian and are invariant under an anti-linear symmetry which reduces
to the standard PT symmetry for some cases. A new inner product structure along with a
positive-definite metric operator can be constructed in the Hilbert space using the property
of pseudo-Hermiticity. The probabilistic interpretation of the quantum mechanics and the
unitary time evolution of the eigenstates can be restored with this new inner product.

The purpose of this paper is to construct a new class of non-Hermitian Hamiltonians
that admit entirely real spectra and allows an explicit construction of the positive-definite
metric operator in the Hilbert space. In particular, we show that for a given Hermitian
Hamiltonian possessing supersymmetry, there is always a non-Hermitian Jaynes–Cummings-
type Hamiltonian (JCTH) [19, 20] admitting entirely real spectra. The reality of the spectra
is derived solely by using the superalgebra and without any particular representation of the
supercharges. Moreover, the parent supersymmetric Hamiltonian and the corresponding
non-Hermitian JCTH can be diagonalized simultaneously. Thus, if the eigenstates of the
parent supersymmetric Hamiltonian are known exactly, the eigenstates of the corresponding
non-Hermitian JCTH can be calculated easily. Among several known exactly/partly solved
supersymmetric quantum mechanical Hamiltonians [21–24], the eigenstates of non-Hermitian
JCTH corresponding to the one-dimensional ‘shape-invariant’ potentials are obtained exactly
and algebraically. Only those ‘shape-invariant’ potentials are considered for which the partner
potentials are related to each other through a translation in the parameter. One of the most
notable among these examples of non-Hermitian JCTH is the standard Jaynes–Cummings
(JC) Hamiltonian with non-Hermitian interaction for which the superoscillator is the parent
Hamiltonian. We show that the non-Hermitian JC model considered in this paper admits a
complete set of bi-orthonormal vectors [25]. Moreover, it can be shown that the non-Hermitian
JCTH is in fact pseudo-Hermitian as well as quasi-Hermitian [17, 18].

We also study a class of non-Hermitian (2 × 2)-dimensional matrix Hamiltonians that
admit entirely real spectra. Special cases of this class of Hamiltonians include the JC model
with, intensity-dependent coupling [26], Kerr nonlinearity [27], multi-photon interaction [28],
q-oscillator [29] and the dressed JC model [30]. We have also shown that a non-Hermitian
version of the Tavis–Cummings model (TCM) [20], an N-molecule generalization of the
JC model, admits entirely real spectra. We explicitly construct the positive-definite metric
operator in the Hilbert space and introduce the associated inner product structure for all these
models. Consequently, the probabilistic interpretation of quantum mechanics and the unitary
time evolution of the eigenstates can be retained.

The plan of this paper is the following. We first describe the superalgebra and introduce
the non-Hermitian Hamiltonian that admits entirely real spectra in the next section. We then
find the expression for the energy eigenvalues of this non-Hermitian Hamiltonian in terms
of the energy eigenvalues of the parent supersymmetric Hamiltonian. In section 3, several
examples of non-Hermitian JCTH admitting entirely real spectra are studied. The example
of a non-Hermitian generalization of the standard JC Hamiltonian is studied in detail in
section 3.1, followed by a general discussion on a non-Hermitian 2 × 2 matrix Hamiltonian
admitting entirely real spectra in section 3.2. We introduce and study a non-Hermitian
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version of the TCM in section 3.3. A non-Hermitian generalization of the supersymmetric
Hamiltonians with ‘shape-invariant’ potentials for which the partner potentials are related to
each other through a translation in the parameter is discussed in section 3.4. Finally, we
conclude by summarizing our results in section 4. In the appendix, the metric operator for
non-Hermitian (4 × 4)- and (8 × 8)-dimensional matrix Hamiltonian is constructed explicitly.

2. JCTH from supersymmetry: general formulation

The algebra governing the N = 1 supersymmetric quantum mechanics with the Hamiltonian
H is given by

{Q,Q†} = H, Q2 = Q†2 = 0, [H,Q] = [H,Q†] = 0, (1)

where Q is the supercharge and Q† is its adjoint. The Hamiltonian H is Hermitian and semi-
positive definite by construction. All the eigenvalues En of H are thus real and semi-positive
definite. We now construct a non-Hermitian Hamiltonian H corresponding to H as

H = {Q,Q†} + c1 eiθQ + c2 e−iθQ†, (2)

where c1, c2 and θ are real parameters. The Hamiltonian H is non-Hermitian for c1 �= c2 and
Hermitian for c1 = c2. The Hamiltonian H is identical to the JC model if c1 = c2 and Q is
chosen to be that of one-dimensional superoscillator. We thus refer to the whole class of H
with arbitrary Q and c1,2 as JCTH. We will show that H admits entirely real spectra for

β ≡ c1c2 > 0. (3)

The spectra appears in complex-conjugate pairs for β < 0. No general conclusions could be
drawn within our approach for the critical case β = 0, i.e. either c1 = 0 or c2 = 0. We will be
working in this paper only with β obeying inequality (3).

Define an operator linear in the supercharges Q and Q†,

S(θ) ≡ c1 eiθQ + c2 e−iθQ†. (4)

The square of the operator S is proportional to H,

S2 = βH. (5)

Although the operator S is non-Hermitian for c1 �= c2, its square S2 is Hermitian for any
real c1,2 and semi-positive definite for β > 0. For Hermitian S, i.e. c1 = c2, the condition
β > 0 is satisfied automatically. The Hamiltonian H and the operator S can be diagonalized
simultaneously, since they commute with each other. From equation (5), we find that the
eigenvalues Es

n of S,

Es
n = ±

√
βEn (6)

are real, since En � 0 and β is taken to be positive. For those cases for which En has no
upper bound, the operator S is not bounded from below due to its negative eigenvalues. The
eigenvalues of H = H + S are

E±
n ≡ En + Es

n

= En ±
√

βEn. (7)

Although H is not Hermitian, we have the remarkable result that its eigenvalues are real for
β > 0. Finally we remark that for β < 0, the eigenvalues of H appear in complex-conjugate
pairs.
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Following comments are in order.

(i) In supersymmetric quantum mechanics, the superalgebra with arbitrary N number of
supercharges reads [31],{

Qa,Q
†
b

} = δabH, {Qa,Qb} = {
Q†

a,Q
†
b

} = 0,

[H,Qa] = 0 = [
H,Q†

a

]
, a, b = 1, 2, . . . ,N .

(8)

Define the operator SN ,

SN =
∑

a

(
ca

1 eiθaQa + ca
2 e−iθaQ†

a

)
, (9)

where ca
1,2 and θa are real parameters for all a. We now find that S2

N = βNH with
βN = ∑

a ca
1c

a
2 . Thus, the Hamiltonian HN = H + SN admits entirely real spectra

for βN > 0. The Hamiltonian HN and H can be diagonalized simultaneously, since
[H, SN ] = 0.

(ii) There are many square roots of the semi-positive definite operator S2. First note that for
any given non-Hermitian square root, its Hermitian adjoint is also a square root, since S2

is Hermitian. A few of these non-Hermitian square-roots apart from S are

S1(θ) = iγ5S(θ),

S2(θ) = c1 eiθ (H + ε2)Q + c2 e−iθ (H + ε2)−1Q†, {ε ∈ �|ε �= 0},
S3 = iγ5S2,

(10)

where γ 2
5 = 1 and it anticommutes with both Q and Q†. A construction of γ5 is

given in the appendix. The Hamiltonian H with S replaced by any one of these Si , i.e.
Hi = H + Si , would admit entirely real spectra for i = 1, 2, 3. The Hamiltonian H and
Hi are isospectral Hamiltonians. The eigenstates of Hi and H can also be simultaneously
diagonalized, since [H, Si] = 0 ∀ i. However, a separate analysis is needed in each case
for constructing the simultaneous eigenstates in the defining Hilbert space.

(iii) The relation between the JC model and supersymmetry was first noted in [32], where
c1 = c

†
2 was treated as an anticommuting variable instead of a c-number. This

anticommuting variable also anticommutes with all the odd operators of the superalgebra
and c

†
1c1 was chosen to be nilpotent in order to derive the spectrum. Thus, the approach

taken in this paper in relating the JC model to supersymmetry is different from that of
[32]. Our approach is similar to that of [33] and the Hamiltonian H should be treated as a
matrix Hamiltonian rather than an element of the superalgebra. However, the Hamiltonian
H is indeed a bosonic element of the superalgebra and the underlying superalgebra
greatly simplifies the whole analysis.

3. Examples of non-Hermitian JCTH

The superalgebra (1) for one-dimensional quantum mechanical system can be realized in terms
of the Pauli matrices σi as

Q = σ+a, Q† = σ−a†, σ± = 1
2 (σ1 ± iσ2), (11)

where the operators a and a† are functions of the position and the momentum only. The
Hamiltonian H now reads

H = a†a + 1
2 [a, a†](σ3 + 1) + c1 eiθσ+a + c2 e−iθσ−a†. (12)
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The Hamiltonian H and its adjoint H† are related to each other through the transformation
c1 ↔ c2. With the introduction of an operator η,

η ≡
(

δ1 0
0 δ2

)
,

δ1

δ2
= c2

c1
, (13)

it is easily verified that H is pseudo-Hermitian, i.e. H† = ηHη−1. It may be noted that η

reduces to an identity matrix multiplied by a constant δ1 = δ2 in the limit c1 = c2 for which the
Hermiticity of H is restored. The matrix η is not unique and among all possible such matrices,
the unique positive-definite matrix η+ is obtained by taking δ1 = γ −1 and δ2 = γ , where γ is
defined as γ ≡

√
c1
c2

. Note that the metric η+ is unique up to an overall multiplication factor
that is positive definite. The condition of pseudo-Hermiticity implies that [2], if |ψ〉 is an
eigenstate of H with the eigenvalue E , then,

|φ〉 = η|ψ〉, (14)

is an eigenstate of H† with the same eigenvalue E . Conversely, if |φ̃〉 is an eigenstate of H†

with the eigenvalue Ẽ , then |ψ̃〉 = η−1|φ̃〉 is an eigenstate of H with the eigenvalue Ẽ . The
relation (14) and the positive-definite matrix η+ will be used later to construct a new inner
product in the Hilbert space. Further, H can be mapped to a Hermitian Hamiltonian h,

h = a†a + 1
2 [a, a†](σ3 + 1) + β(eiθσ+a + e−iθσ−a†), (15)

through the similarity transformation, h = ρHρ−1, where ρ := √
η is the positive square root

of η. In the notion of [17, 18], H is also quasi-Hermitian.

3.1. Non-Hermitian resonant JC model

The Hamiltonian H reduces to a non-Hermitian generalization of the standard JC model, if
a, a† are chosen to represent the usual anhilation, creation operators of harmonic oscillators,
i.e. a = 1√

2
(p − ix), a† = 1√

2
(p + ix), [a, a†] = 1. The ground state has zero energy with

the eigenstate, |ψ0〉 = γ − 1
2
[

0
|0〉

]
, where |n〉 is the standard orthonormal basis of the harmonic

oscillator with a|n〉 = √
n|n− 1〉, a†|n〉 = √

n + 1|n + 1〉, |n〉 = (a†)n√
n

|0〉 and |0〉 is the vacuum
state annihilated by a. The excited states are

E±
n+1 = n + 1 ±

√
β(n + 1),

∣∣ψ±
n+1

〉 = (2γ )−
1
2

[±eiθ γ |n〉
|n + 1〉

]
, n = 0, 1, 2, . . . . (16)

The eigenvalues of the adjoint Hamiltonian H† are still given by E±
n+1, while the corresponding

eigenvectors
∣∣φ±

n+1

〉
are obtained from

∣∣ψ±
n+1

〉
through the transformation c1 ↔ c2 or using

equation (14) with η+. In particular,∣∣φ±
n+1

〉 = (2γ )−
1
2

[±eiθ |n〉
γ |n + 1〉

]
, n = 0, 1, 2, . . . . (17)

Note that the state
∣∣ψ±

n

〉
is not orthogonal to

∣∣ψ∓
m

〉
with the usual definition of inner product,

unless the condition of Hermiticity, i.e., c1 = c2 is imposed. However, the eigenstates
∣∣ψ±

n

〉
and |φ±

m〉 together constitute a complete set of bi-orthonormal vectors for arbitrary c1,2,〈
ψI

n

∣∣φJ
m

〉 = δmnδIJ ,
∑
n,I

∣∣ψI
n

〉〈
φI

n

∣∣ =
∑
n,I

∣∣φI
n

〉〈
ψI

n

∣∣ = 1, I, J = +,−. (18)

A new inner product structure can be constructed as 〈〈u|v〉〉η+ = 〈u|η+|v〉. The norm of any
arbitrary state vector 〈u| = (〈m|, 〈n|) is positive definite under this new inner product structure,
since γ is always positive definite for β > 0. Furthermore, note that η+ reduces to an identity
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matrix in the limit c1 = c2 for which the Hermiticity of H is restored. Consequently, the new
inner product structure is identical to the standard one for c1 = c2. We now find a complete
set of orthonormal vectors for H,〈〈
ψ±

n

∣∣ψ±
m

〉〉
η+

= δnm,
〈〈
ψ±

n

∣∣ψ∓
m

〉〉
η+

= 0,
∑
m

η+
(∣∣ψ−

m

〉〈
ψ−

m

∣∣ +
∣∣ψ+

m

〉〈
ψ+

m

∣∣) = 1. (19)

The Hamiltonian H is Hermitian with respect to this new inner product.
A comment is in order at this point. The operator γ5 in equation (A.2) is determined as

γ5 = −σ3 for N = 1 and ψ1 := σ−. Note that S1
(
θ + π

2

) = S(θ), implying that H1 and H are
not independent of each other. Similarly, H2 and H3 are also not independent. However, it is
expected that these Hamiltonians will be independent of each other for N > 1.

3.2. Non-Hermitian non-resonant JC model and other generalizations

The example considered in the previous section corresponds to a non-Hermitian generalization
of the resonant JC model. A non-Hermitian version of the non-resonant JC model also admits
entirely real spectra. In particular,

HNR = H + �σ3, (20)

is pseudo-Hermitian under η and admits entirely real spectra for β > 0. For β < 0, the
eigenvalues are not entirely real and a further choice of θ = 0 reproduces the result obtained
in [12]. The eigenvalues are

E±
n+1 = n + 1 ± [�2 + β(n + 1)]

1
2 , (21)

with the eigenstates,

∣∣ψ±
n+1

〉 =
(

γ

γ 2 +
∣∣n±

∣∣2

) 1
2 [

n
±|n〉

|n + 1〉
]

, n
± ≡ eiθ

c2

√
n + 1

[
� ± {�2 + β(n + 1)} 1

2
]
, (22)

where n is a non-negative integer. The ground-state energy is E0 = −� with the corresponding

eigenstates, |ψ0〉 = γ − 1
2
[

0
|0〉

]
. These eigenstates form a complete set of orthonormal vectors

with respect to the new inner product structure 〈〈·|·〉〉η+ .
There are many physically motivated generalizations of the standard JC model by

including intensity-dependent coupling [26], Kerr nonlinearity [27], multi-photon interaction
[28] and q-oscillator interaction [29]. In order to study a non-Hermitian version of these
generalized models, consider the following non-Hermitian matrix Hamiltonian:

H̃ =
(

f1(a, a†) c1 eiθg(a, a†)

c2 e−iθg†(a, a†) f2(a, a†)

)
, f

†
1 = f1, f

†
2 = f2, (23)

where the Hermitian adjoint is taken with respect to the standard inner product. The
Hamiltonian H̃ may or may not be supersymmetric for c1 = c2 = 0. In general, f1, f2

and g are arbitrary functions of the operators a, a†. Specific choices of f1, f2 and g lead to
integrable reductions of H̃ that include a non-Hermitian version of the generalized JC models
[26–29]. Note that the Hamiltonian H̃ in its full generality is pseudo-Hermitian, H̃† = ηH̃η−1,
where η is given by equation (13). Following [2], we conclude that H̃ admits entirely real
spectra for β > 0, since the positive definite metric η+ exists for a positive definite β. Further,
the new inner product structure 〈〈·|·〉〉η+ should be used for all relevant calculations. The
Hamiltonian H̃ is also quasi-Hermitian, h̃ = ρH̃ρ−1, where h̃ is Hermitian,

h̃ =
(

f1(a, a†) β eiθg(a, a†)

β e−iθg†(a, a†) f2(a, a†)

)
, (24)
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and ρ := √
η. The eigenspectra of H̃ corresponding to the non-Hermitian generalization of

the models considered in [26–29] could be obtained in a straightforward way.
The customary JC model is derived adopting the rotating-wave approximation [19]. There

are additional terms in the Hamiltonian without this approximation and the corresponding
Hamiltonian is known as ‘dressed’ JC Hamiltonian in the literature [32, 30]. Note that a non-
Hermitian version of the ‘dressed’ JC model is included in the Hamiltonian H̃. In particular,
if we choose,

f1 = b1a
†a + b2(a

2 + a†2
) + b3, f2 = d1a

†a + d2(a
2 + a†2

) + d3, g = e1a + e2a
†,

(25)

where bi, di, ei are arbitrary real parameters, then H̃ is a non-Hermitian version of the
‘dressed’ JC model that admits real spectra. All the discussions in the previous paragraph
hold true for this Hamiltonian, except for the fact that finding the exact spectra is a non-trivial
task. Finally, we would like to mention that for the special choices of the parameters,

b1 = d1 = e2
1 + e2

2, b2 = d2 = e1e2, b3 = e2
1, d3 = e2

2, (26)

the diagonal elements f1 and f2 correspond to the partner Hamiltonians of a supersymmetric
Hamiltonian H̃ = {Q̃, Q̃†} with Q̃ = σ+g, Q̃† = σ−g†. The Hamiltonian H̃ can be expressed
as H̃ = H̃ + c1 eiθ Q̃ + c2 e−iθ Q̃†.

3.3. Non-Hermitian Tavis–Cummings model

The TCM deals with N identical two-level molecules interacting through a dipole coupling
with a single-mode quantized radiation field [20]. We consider a non-Hermitian version of
TCM,

HT C = a†a + R3 + 1
2 + c1 eiθaR+ + c2 e−iθa†R−, (27)

where the generators R3, R± satisfy the SU(2) algebra,

[R3, R±] = ±R±, [R+, R−] = 2R3. (28)

The Hermitian TCM [20] is obtained in the limit c1 = c2. Without loss of any generality,
we have added an extra term equal to 1

2 in the expression of HT C for the convenience of
discussions in the later part of this section. The SU(2) generators are realized in terms of the
Pauli matrices and the 2 × 2 identity matrix I as

R∓ =
N∑

i=1

�i
∓, R3 =

N∑
i=1

�i
3,

�i
a = I ⊗ · · · ⊗ I ⊗ σa ⊗ I ⊗ · · · ⊗ I, a = ∓, 3 (σa in ith position).

(29)

We now define the metric operator ηN as

ηN = η ⊗ η ⊗ · · · ⊗ η (N times). (30)

The Hamiltonian HT C is pseudo-Hermitian under ηN,H
†
T C = ηNHT Cη−1

N . The positive-
definite metric operator η+

N exists and it can be constructed through the replacement of η

by η+ in ηN . Thus, the non-Hermitian TCM admits entirely real spectra with consistent
quantum mechanical interpretation for β > 0. The Hamiltonian HT C is quasi-Hermitian
under ρ := √

ηN, hT C = ρHT Cρ−1, where the Hermitian hT C = a†a + R3 + 1
2 + β(eiθaR+ +

e−iθa†R−).
The individual two-level molecules in the TCM, with the SU(2) generators given by

equation (29), are independent of each other. However, the individual molecules are no longer
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independent of each other, if the representation of the SU(2) generators given by equation (A.4)
in the appendix is used. The advantage of the representation of the SU(2) generators given
by equation (A.4) is that the Hamiltonian HT C can now be written as

HT C = {Q,Q†} + c1 eiθQ + c2 e−iθQ†, Q = a†R−, Q† = aR+. (31)

Defining the metric operator and its inverse as

η = δ2R+R− + δ1R−R+, η−1 = δ−1
2 R+R− + δ−1

1 R−R+, (32)

we find that H
†
T C = ηHT Cη−1. The positive-definite metric exists and can be obtained by

taking δ1 = γ −1, δ2 = γ . Thus, the TCM with the representation of the SU(2) generators
given by equation (A.4) also admits a real spectra with consistent quantum mechanical
interpretation.

3.4. Non-Hermitian JCTH and shape-invariant potentials

The operator a, a† corresponding to more general supersymmetric Hamiltonian H can be
written as

a = p − iw(x, q), a† = p + iw(x, q), (33)

where q is a parameter and the superpotential w is a real function of the coordinate x. The
supersymmetric Hamiltonian H and the corresponding non-Hermitian JCTH H now reads

H = p2 + w2 + iσ3[p,w], H = �2 + W 2 + iσ3[�,W ], (34)

where the operators � and W are defined as

� ≡ p +
c1 eiθ

2
σ+ +

c2 e−iθ

2
σ−, W ≡ w(x, q) +

c1

2
ei(θ− π

2 )σ+ +
c2

2
e−i(θ− π

2 )σ−. (35)

Both � and W are non-Hermitian for c1 �= c2 and iσ3[�,W ] = iσ3[p,w] − c1c2
2 . The

supersymmetric Hamiltonian H is diagonal with the diagonal elements, H± ≡ p2 + V±, where
the partner potentials V± are defined as V± ≡ w2 ± ∂w

∂x
.

We consider here only those cases for which V± are related to each other through a
translation in the parameter q. Examples of such ‘shape-invariant’ potentials are abundant in
the literature [21]. Following [22, 33], we further introduce the operators,

T ≡ exp

(
ξ

∂

∂q

)
, T † ≡ exp

(
−ξ

∂

∂q

)
,

B− ≡ T †(q)a(q), B+ ≡ a†(q)T (q),

(36)

where T is the translational operator for the parameter q. In particular, T acting on an operator
O gives T (q)O(q)T −1(q) = O(q + ξ). Generalizing the algebraic method employed in [33]
to the non-Hermitian case, we find the eigenstates of H,

E±
n+1 = En+1 ±

√
βEn+1,

∣∣ψ±
n+1

〉 = (2γ )−
1
2

[
eiθγ T |n〉
±|n + 1〉

]
, n = 0, 1, 2, . . . , (37)

where |n〉 is an orthonormal basis for the generalized Heisenberg algebra satisfied by the
operators B± with the role of number operator being played by B+B−. En is the eigenvalue
of the operator B+B− = a†a. The ground state has zero energy with the eigenstate, |ψ0〉 =
γ − 1

2
[

0
|0〉

]
. The eigenstates in equation (37) form a complete set of orthonormal vectors with

respect to the new inner product structure defined above.
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4. Summary and conclusions

We have shown that for a given Hermitian Hamiltonian possessing supersymmetry, there
always exists a non-Hermitian JCTH admitting entirely real spectra. Moreover, if the parent
supersymmetric Hamiltonian is exactly solvable, the corresponding JCTH can also be solved
exactly. This is because these two Hamiltonians are simultaneously diagonalizable. These
results are derived solely by using the superalgebra and without any particular representation
for the supercharges. Thus, our prescription to construct non-Hermitian Hamiltonian admitting
entirely real spectra is very general and constitutes a new class itself.

We have also studied a class of non-Hermitian (2 × 2)-dimensional matrix Hamiltonians
that admit entirely real spectra. Special cases of this class of Hamiltonians include the JC model
with intensity-dependent coupling, Kerr nonlinearity, multi-photon interaction, q-oscillator
and the dressed JC model. We have also shown that a non-Hermitian version of the TCM, an
N-molecule generalization of the JC model, admits entirely real spectra.

We have solved exactly the JCTH corresponding to one-dimensional supersymmetric and
shape-invariant potentials. We have constructed a new inner product structure along with
the positive-definite metric operator for this class of JCTH as well as for all other physically
motivated generalizations of the JC model considered in this paper. Thus, for all these non-
Hermitian models, a complete set of orthonormal vectors exists and a consistent interpretation
of the relevant physical observables are possible. Finally, the examples considered in this
paper include a non-Hermitian generalization of the standard JC model for which the parent
supersymmetric Hamiltonian is the superoscillator. It would be nice if any observable
effect due to the non-Hermiticity could be noted for this Hamiltonian using micromaser
[34] experiments.

Acknowledgments

This work is supported (DO No. SR/FTP/PS-06/2001) by SERC, DST, Govt of India through
the Fast Track Scheme for Young Scientists:2001-2002.

Appendix. Explicit construction of the metric operator η for a many-particle system

Consider a set of fermionic variables ψi and ψ
†
i satisfying the Grassman algebra,

{ψi, ψj } = {
ψ

†
i , ψ

†
j

} = 0,
{
ψi, ψ

†
j

} = δij . (A.1)

One can further define an operator γ5,

γ5 = (−1)N
N∏

i=1

(
2ψ

†
i ψi − 1

)
, (A.2)

which has the following property:

γ 2
5 = 1, {γ5, ψi} = 0 = {

γ5, ψ
†
i

} ∀ i. (A.3)

The matrix representation [35] of these anticommuting variables can be used to construct the
generators of SU(2). In particular,

R− = 1√
N

∑
i

ψi, R+ = 1√
N

∑
i

ψ
†
i , R3 = 1

2N

∑
i,j

[
ψ

†
i , ψj

]
. (A.4)

Apart from satisfying the SU(2) algebra (28), the generators (A.4) also satisfy the following
relations:

R2
− = 0 = R2

+, {R−, R+} = 1, R±R∓ = (±R3 + 1
2

)
. (A.5)
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The generators in equation (A.4) correspond to higher dimensional reducible representation
of SU(2).

The superalgebra (1) for higher dimensional or many-particle quantum mechanical system
can be realized as

Q =
N∑

i=1

a
†
i ψi, Q† =

N∑
i=1

aiψ
†
i . (A.6)

The operators ai

(
a
†
i

)
are expressed in terms of the momentum pi of the ith particle and the

superpotential W(x),

ai = pi − iWi(x), a
†
i = pi + iWi(x), Wi(x) = ∂W

∂xi

, (A.7)

where particle coordinates are denoted by xi . Note that,

[ai, aj ] = 0 = [
a
†
i , a

†
j

]
,

[
ai, a

†
j

] = ∂2W

∂xi∂xj

. (A.8)

The anti-commutation property of γ5 in equation (A.3) implies that {Q, γ5} = 0 = {Q†, γ5}.
We now construct the metric operator η for N = 2 and N = 3. For N = 2, we choose,

ψ1 = σ3 ⊗ σ−, ψ2 = σ− ⊗ I. (A.9)

The operators H,Q, S are (4 × 4)-dimensional matrices with the elements being functions of
a1,2 and a

†
1,2. It turns out that the metric operator η is given by η2 of equation (30). In a similar

way, for N = 3, we choose,

ψ1 = σ3 ⊗ σ− ⊗ I, ψ2 = I ⊗ σ3 ⊗ σ−, ψ3 = σ− ⊗ I ⊗ σ3. (A.10)

The operatorsH,Q, S are now (8×8)-dimensional matrices with the elements being functions
of a1,2,3 and a

†
1,2,3. We find the metric operator η is given by η3 of equation (30). On the basis

of these results, we conjecture that for arbitrary N, the metric operator is given by ηN . The
positive-definite metric operator η+

N is obtained through the replacement of η by η+.
The Hamiltonian H admits entirely real spectra for β > 0. Further, we have explicitly

constructed the positive-definite metric operator for N = 2 and N = 3, implying that a
consistent quantum mechanics can be constructed for these cases and for arbitrary W(x).
In fact, in two and three dimensions, one can now easily construct an exactly solvable
non-Hermitian H admitting entirely real spectra and with consistent quantum mechanical
interpretation by simply choosing an exactly solvable H. Some of the simplest choices for
H are two- and three-dimensional superoscillators and all types of two and three particle
super-Calogero models.
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